

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry

Bioorganic & Medicinal Chemistry 14 (2006) 1710–1714

Anti-HIV-1 protease activity of compounds from Boesenbergia pandurata

Sarot Cheenpracha, a Chatchanok Karalai, a Chanita Ponglimanont, a Sanan Subhadhirasakul and Supinya Tewtrakul **.*

^aDepartment of Chemistry, Faculty of Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand

^bDepartment of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences,

Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand

Received 15 September 2005; revised 10 October 2005; accepted 11 October 2005 Available online 2 November 2005

Abstract—Searching for anti-HIV-1 protease (PR) inhibitors of Thai medicinal plants led to the isolation of a new cyclohexenyl chalcone named panduratin C (1) and chalcone derivatives (2–6) from the methanol extract of *Boesenbergia pandurata* rhizomes. The known compounds were identified to be panduratin A (2), hydroxypanduratin A (3), helichrysetin (4), 2',4',6'-trihydroxyhydrochalcone (5), and uvangoletin (6). The structures of all compounds were elucidated on the basis of chemical and spectroscopic methods. It was found that 3 possessed the most potent anti-HIV-1 PR activity with an IC₅₀ value of 5.6 μ M, followed by 2 (IC₅₀ = 18.7 μ M), whereas other compounds exhibited only mild activity. Structure–activity relationships of these compounds on anti-HIV-1 PR activity are summarized as follows: (1) hydroxyl moiety at position 4 conferred higher activity than methoxyl group; (2) prenylation of dihydrochalcone was essential for activity; (3) hydroxylation at position 4" reduced activity; and (4) introduction of double bond at C1' and C6' of chalcone gave higher activity. As regards active constituents contained in *B. pandurata* rhizomes, hydroxypanduratin A (3) and panduratin A (2) are active principles against HIV-1 PR.

1. Introduction

Boesenbergia pandurata Holtt., locally known in Thai as Kra-chai, is a perennial herb belonging to the Zingiberaceae family. The fresh rhizomes have a characteristic aroma and a slightly pungent taste. It is commonly used in Southeast Asia as a food ingredient, a folk medicine for the treatment of several diseases such as aphthous ulcer, dry mouth, stomach discomfort, leukorrhea, and dysentery.1 The rhizomes contain essential oil,2 pinostrobin, cardamonin, boesenbergin,³ 5,7-dimethoxyflavone, 1,8-cineole, and panduratin.⁴ In the primary health care project of Thailand, the rhizomes of this plant are used for treatment of dyspepsia. Moreover, it has also been used as self-medication by AIDS patients in Thailand. As regards its biological activities, B. pandurata exhibits antibacterial,⁵ antifungal,⁶ anti-inflammatory, analgesic, antipyretic, antispasmodic, antitumor, and insecticidal activities.

 $\begin{tabular}{ll} {\it Keywords}: & HIV-1 & protease; & Cyclohexenyl & chalcone & derivatives; \\ {\it Boesenbergia\ pandurata}. \end{tabular}$

The human immunodeficiency virus type-1 (HIV-1), a member of retrovirus family, has been a causative organism in an acquired immunodeficiency syndrome (AIDS). One of the important enzymes necessary for the replication of this virus is HIV-1 protease (HIV-1 PR). HIV-1 PR belongs to the aspartyl protease class and functions as a dimer of 99 amino acids each. This enzyme plays a crucial role in the process of viral maturation and infectivity. Thus, searching for HIV-1 PR inhibitors from natural sources has become a promising approach.

In the previous study, we reported the activity of some compounds isolated from *B. pandurata* on anti-HIV-1 PR activity.¹³ Herein, we report the isolation, structure elucidation of a new compound, and the activity against HIV-1 PR of chalcone derivatives from this plant.

2. Results and discussion

The MeOH extract of rhizomes of *B. pandurata* was fractionated by silica gel column chromatography and preparative TLC to obtain one new cyclohexenyl

^{*} Corresponding author. Tel./fax: +66 74 428220; e-mail: supinya.t@psu.ac.th

chalcone (panduratin C, 1) together with five known chalcones, panduratin A (2),¹⁴ hydroxypanduratin A (3),¹⁵ helichrysetin (4),¹⁶ 2',4',6'-trihydroxydihydrochalcone (5),¹⁷ and uvangoletin (6).¹⁸ The structures of isolated compounds are shown in Figure 1.

Panduratin C (1), $[\alpha]_D^{27}$: -24.0° (c 0.13, MeOH), was obtained as a yellow viscous oil and analyzed as $C_{26}H_{30}O_5$ ($[M]^+$ m/z 422.2044). The IR spectrum displayed absorption bands at 3438 (hydroxyl) and 1624 (conjugated carbonyl) cm⁻¹, and UV absorption bands at λ_{max} 220 and 292 nm supporting the presence of a conjugated carbonyl in the structure. The ¹³C NMR and DEPT spectrum indicated the presence of 26 carbons as 12 aliphatic carbons (3Me, 2CH₂, 3CH, and 2C=CH-), 12 aromatic carbons (6CH, 2C, and 4C–O), one carbonyl, and one methoxyl carbon. The ¹H NMR spectral data displayed a downfield resonance at δ 13.90, attributable to chelated hydroxyl group, while two doublets in the aromatic region (at δ 7.04 and 6.68, each 2H, J = 8.1 Hz) suggested the presence of a para-disubstituted aromatic ring. Two aromatic protons as two doublets at δ 5.89 and 5.92 (each J = 2.4 Hz) and one singlet at δ 3.90 were assigned to H-3, H-5, and OMe, respectively. The proton signals at δ 4.85 (1H, t, J = 6.6 Hz), 2.47 (1H, m), 2.26 (1H, m), and 1.50 (6H, s) indicated the presence of an isoprenyl moiety. Additionally, four methine proton signals at δ 5.42 (1H, br s, H-4'), 4.41 (1H, dd, J = 11.4, 4.5 Hz, H-1'), 3.35 (1H, td, J = 11.4, 6.6 Hz, H-6'), and 2.47 (1H, m, H-2'), and a vinylic methyl proton at δ 1.78 (3H, s) indicated that 1 had a cyclohexenyl chalcone skeleton. 14,15 The connectivity of H-4'/H-5', H-5'/H-6', H-6'/H-1', H-1'/H-2', H-2'/H-1", and H-1"/H-2" in COSY spectrum confirmed that isoprenyl group was connected to C-2'. In the HMBC spectrum, the methine proton at δ 4.41 (H-1') correlated with carbons at δ 206.5 (C=O), 42.5 (C-2'), 35.8 (C-5'), 36.3 (C-6'), and 28.9 (C-1"), a methine proton at δ 2.47

(H-2') with carbons at δ 124.2 (C-2"), 121.0 (C-4'), and 36.3 (C-6'), a methine proton at δ 3.35 (H-6') with carbons at δ 139.2 (C-1"'), 128.1 (C-2"'/6"'), and 54.5 (C-1'), and methyl protons at δ 1.78 (3'-Me) with carbons at δ 137.2 (C-3'), 121.0 (C-4'), and 42.5 (C-2'). These evidences confirmed that the para-disubstituted aromatic ring, isoprenyl moiety, and vinylic methyl were attached to carbons C-6', C-2', and C-3', respectively. The chelated hydroxyl group at δ 13.90 correlated with carbons at δ 167.5 (C-2), 106.8 (C-1), and 96.7 (C-3). The methoxyl proton at δ 3.90 was assigned at C-6 from its HMBC correlation (Fig. 2) with carbon at δ 162.8 (C-6) and a NOESY cross-peak with H-5 (δ 5.92). The relative stereochemistry of 1 was identified on the basis of coupling constants and NOESY experiments. The large J value of proton H-1' (J = 11.4 Hz) indicated that H-1' should be α-axial oriented. 14 In the NOESY, a methine proton at δ 4.41 (H-1') showed cross-peaks with protons δ 2.47 (H-2') and 7.04 (H-2"/H-6") but none with proton at δ 3.35 (H-6'), suggesting that H-2' and H-6' should be α-equatorial and β-axial oriented, respectively. Thus, panduratin C was determined to be (2, 4-dihydroxy-6-methoxyphenyl)[3'-methyl-2'-(3"-methylbut-2"-enyl)-6'-(4"'-hydroxyphenyl)cyclohex-3'-enyl]methanone (1).

The compounds (1–6) isolated from the rhizomes of *B. pandurata* were investigated for anti-HIV-1 PR activity. Cardamonin (7) used in this study was previously isolated from this plant by our group. 12 Among the isolated compounds tested, hydroxypanduratin A (3) exhibited the most potent HIV-1 PR inhibitory activity with an IC₅₀ value of 5.6 μ M, followed by panduratin A (2, IC₅₀ = 18.7 μ M), whereas other compounds possessed weak activity (Table 1 and Fig. 3). Structure–activity relationships of these class of compounds for anti-HIV-1 PR activity are summarized as follows: (1) hydroxyl moiety at position 4 conferred higher activity than the methoxyl group as observed in 3

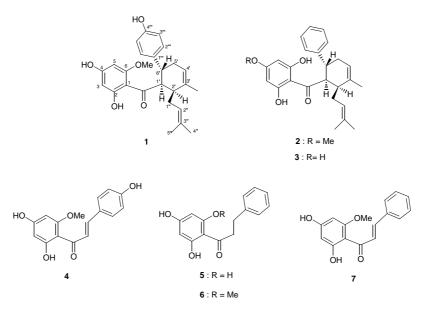


Figure 1. Chemical structures of compounds isolated from the rhizomes of Boesenbergia pandurata.

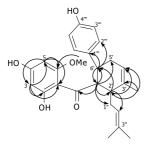
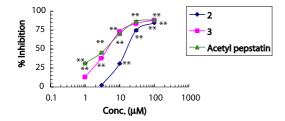



Figure 2. Selected HMBC correlations of panduratin C (1).

Table 1. HIV-1 PR inhibitory activity of compounds **1-7** of *Boesenbergia pandurata*^a, () = % inhibition at $100 \mu M$

Compound	IC ₅₀ (μ M)
Panduratin C (1)	>100 (43.1%)
Panduratin A (2)	18.7 ± 0.8
Hydroxypanduratin A (3)	5.6 ± 0.7
Helichrysetin (4)	>100 (14.1%)
2', 4', 6'-Trihydroxyhydrochalcone (5)	>100 (7.5%)
Uvangoletin (6)	>100 (2.7%)
Cardamonin (7)	>100 (47.6%)
Acetyl pepstatin, positive control	3.4 ± 0.2

^a Each value represents the mean ± SD of the three determinations.

Figure 3. Dose–response curve of compounds **2** and **3** against HIV-1 PR comparing with acetyl pepstatin. Each value represents the mean \pm SD of the three determinations. Significantly different from control: *p < 0.05; **p < 0.01.

 $(IC_{50} = 5.6 \,\mu\text{M})$ versus 2 $(IC_{50} = 18.7 \,\mu\text{M})$; (2) prenylation of dihydrochalcone (3, $IC_{50} = 5.6 \mu M$) produced higher activity than non-prenylated one (5, $IC_{50} > 100 \,\mu\text{M}$); (3) hydroxylation at position 4" reduced activity, as observed in 7 (47.6%) versus 4 (14.1%); and (4) introduction of a double bond at C1' and C6' of chalcone gave higher activity as shown in 7 (47.6% inhibition) versus **6** (2.7% inhibition). In 1998, Ma and co-workers reported potent non-peptide HIV-1 PR inhibitors, ursolic acid and its glutaryl hemiester derivative, whose IC₅₀ values are 8.0 and $4.0 \mu M$, respectively.¹⁹ These two compounds possessed comparable activity to hydroxypanduratin $IC_{50} = 5.6 \,\mu\text{M}$). The potency of 3 against HIV-1 PR was also comparable to that of acetyl pepstatin, a positive control (IC₅₀ = $3.4 \mu M$). Regarding bioactivities of constituents in B. pandurata, panduratin A (2) exhibited strong antibacterial activity against Porphyromonas gingivalis, a bacteria causing periodontitis.20 This compound also possessed anti-inflammatory activity through inhibition of nitric oxide production induced by lipopolysaccharide (LPS) in RAW 264.7 cell line.²¹ Moreover, Tuchinda and co-workers also reported a

topical anti-inflammatory activity of hydroxypanduratin A (3) and panduratin A (2) on TPA-induced ear edema in rats. ¹⁵

In conclusion, hydroxypanduratin A (3) and panduratin A (2) isolated from *B. pandurata* rhizomes are responsible for potent anti-HIV-1 PR activity. The structure–activity relationships of these compounds require the hydroxylation at position 4 and the prenylation of chalcone. This study also supports the use of *B. pandurata* by AIDS patients of Thailand.

3. Experimental

3.1. General experimental procedures

The optical rotation $[\alpha]_D$ values were determined with a JASCO P-1020 polarimeter. UV spectra were measured with a SPECORD S 100 (Analytikjena). The IR spectra were measured with a Perkin-Elmer FTS FT-IR spectro-photometer. The 1H and ^{13}C NMR spectra were recorded using a 300 MHz Bruker FT NMR Ultra Shield TM spectrometer. Chemical shifts were recorded in parts per million (δ) in CDCl₃ or CD₃OD with tetramethylsilane (TMS) as an internal reference. The EI-MS was obtained from a MAT 95 XL mass spectrometer. Quick column chromatography (QCC) and column chromatography (QCC) and column chromatography (CC) were carried out on silica gel 60 F_{254} (Merck) and silica gel 100 (Merck), respectively. Precoated plates of silica gel 60 F_{254} and reversed phase (RP-18 F_{254S}) were used for analytical purposes.

3.2. Plant material

The fresh rhizomes of *B. pandurata* Holtt. were bought from Hat Yai Market, Hat Yai, Thailand. The voucher specimen (number: SN 4412015) was identified by Assoc. Prof. Dr. Sanan Subhadhirasakul and kept at the Herbarium of the Faculty of Pharmaceutical Sciences, Prince of Songkla University, Thailand.

3.3. Extraction and isolation

Briefly, chopped-dried rhizomes (10.0 kg) of B. pandurata were extracted with CHCl₃ and MeOH (30 1×3 , 7 days each) at room temperature and the solvent was evaporated under reduced pressure to afford the CHCl₃ (608.40 g) and MeOH (211.70 g) extracts, respectively. A part of the MeOH extract (140 g) was further subjected to QCC on silica gel (200 g) eluting with hexane/ CH₂Cl₂/MeOH (9:1:0, 1:1:0, 0:100:0, 0:19:1, 0:17:1, 0:1:1, and 0:0:100, each 1500 ml) to yield seven fractions (F1–F7). Fraction F2 (hexane/CH₂Cl₂, 1:1, 18.7 g) was chromatographed by QCC on silica gel (180 g) eluting with hexane/CH₂Cl₂ (1:1, 2000 ml) to give three subfractions (F2a–F2c). Subfraction F2c (1.03 g) was recrystallized from CH₂Cl₂ to give 2 (715.2 mg). Fraction F3 (CH₂Cl₂/MeOH, 19:1, 300 mg) was separated by CC on silica gel (18 g) with CH₂Cl₂/MeOH (19:1, 1000 ml) to afford four subfractions (F3a-F3d). Subfraction F3b (10.3 mg) was purified by preparative TLC with hexane/EtOAc (3:2) to obtain 4 (8.3 mg). Subfraction F3c (130.0 mg) was separated by CC on silica gel (8 g) with hexane/EtOAc (13:7, 400 ml) to give **3** (36.6 mg) and **1** (6.2 mg). Fraction F4 (CH₂Cl₂/MeOH, 17:1, 1.2 g) was purified by CC on silica gel (60 g) and eluted with hexane/EtOAc (13:7, 1500 ml) to give four subfractions (F4a–F4d). Subfraction F4c (49.3 mg) was purified by reversed-phase preparative TLC with MeOH/H₂O (3:1) to afford **5** (25.2 mg). Subfraction F4d (898.0 mg) was subjected to CC on silica gel (60 g) with hexane/ EtOAc (13:7, 1000 ml) to give **6** (21.0 mg).

3.3.1. Panduratin C (1). Yellow viscous oil; $[\alpha]_D^{27}$: -24.0° (*c* 0.13, MeOH); IR (neat): 3438, 1624 cm⁻¹; UV (MeOH): λ_{max} (log ε) = 292 (3.71), 220 (3.95) nm; ¹H NMR (CDCl₃, 300 MHz): δ 13.90 (1H, s, 2-OH), 7.04 (2H, d, J = 8.1 Hz, H-2'''/H-6'''), 6.68 (2H, d,J = 8.1 Hz, H - 3'''/H - 5'''), 5.92 (1H, d, <math>J = 2.4 Hz, H - 5),5.89 (1H, d, J = 2.4 Hz, H-3), 5.42 (1H, br s, H-4'), 4.85 (1H, t, J = 6.6 Hz, H-2"), 4.41 (1H, dd, J = 11.4, 4.5 Hz, H-1'), 3.90 (3H, s, OMe), 3.35 (1H, td, J = 11.4, 6.6 Hz, H-6'), 2.47 (2H, m, H-2', H-1"), 2.45 (1H, m, H-5'), 2.40 (1H, m, H-5'), 2.26 (1H, m, H-1"), 1.78 (3H, s, 3'-Me), 1.50 (6H, s, Me-4"/Me-5"); ¹³C NMR (CDCl₃, 75 MHz): δ 206.5 (C=O), 167.5 (C-2), 162.8 (C-6), 162.1 (C-4), 153.3 (C-4"), 139.2 (C-1"), 137.2 (C-3'), 131.8 (C-3"), 128.1 (C-2""/C-6""), 124.2 (C-2"), 121.0 (C-4'), 115.2 (C-3"'/C-5"'), 106.8 (C-1), 96.7 (C-3), 90.8 (C-5), 55.8 (OMe), 54.4 (C-1'), 42.5 (C-2'), 36.3 (C-6'), 35.8 (C-5'), 28.9 (C-1"), 25.6 (C-5"), 22.9 (3'-Me), 17.9 (C-4"); EI-MS: m/z = 422 [M⁺] (2), 421 $[M^+-1]$ (5), 406 (6), 286 (11), 166 (100), 106 (9); HR-MS: m/z = 422.2044 (calcd for $C_{26}H_{30}O_5$: 422.2088). Copies of original spectra are available from the author of correspondence.

3.4. Enzymes and chemicals

Recombinant HIV-1 PR, substrate peptides, and acetyl pepstatin were purchased from Sigma Chemical Co., St. Louis, USA.

3.5. Assay of HIV-1 protease inhibitory activity

This assay was modified from the previously reported method.²² Briefly, the recombinant HIV-1 PR solution was diluted with a buffer composed of a solution containing 50 mM sodium acetate (pH 5.0), 1 mM ethylenediamine disodium (EDTA·2Na), and 2 mM 2-mercaptoethanol (2-ME), and mixed with glycerol in the ratio of 3:1. The substrate peptide, Arg-Val-Nle-(pNO₂-Phe)-Glu-Ala-Nle-NH₂, was diluted with a buffer solution of 50 mM sodium acetate (pH 5.0). Two microliters of plant extract and 4 µl of HIV-1 PR solution (0.025 mg/ml) were added to a solution containing 2 µl of 50 mM buffer solution (pH 5.0) and 2 µl of substrate solution (2 mg/ml), and the reaction mixture 10 μl was incubated at 37 °C for 1 h. A control reaction was performed under the same condition but without the plant extract. The reaction was stopped by heating the reaction mixture at 90 °C for 1 min. Subsequently, 20 µl of sterile water was added and an aliquot of 10 ul was analyzed by HPLC using RP-18 column $(4.6 \times 150 \text{ mm ID}, \text{ Supelco } 516 \text{ C-}18\text{-DB } 5 \text{ }\mu\text{m}, \text{ USA}).$

Ten microliters of the reaction mixture was injected to the column and gradiently eluted with acetonitrile (15–40%) and 0.2% trifluoroacetic acid (TFA) in water, at a flow rate of 1.0 ml/min. The elution profile was monitored at 280 nm. The retention times of the substrate and $p\text{-NO}_2\text{-Phe-bearing}$ hydrolysate were 11.356 and 9.457 min, respectively. The inhibitory activity on HIV-1 PR was calculated as follows: % inhibition = $(A_{\text{control}} - A_{\text{sample}}) \times 100/A_{\text{control}}$; whereas A is a relative peak area of the product hydrolysate. Acetyl pepstatin was used as a positive control.

3.6. Statistical analysis

For statistical analysis, the results of anti-HIV-1 PR activity were expressed as means \pm SD of three determinations. The IC₅₀ values were calculated using the Microsoft Excel program. Statistical significance was calculated by Dunnett's test.

Acknowledgments

We are grateful to the Thailand Research Fund and the Higher Education Development Project: Postgraduate Education and Research Program in Chemistry, the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program (Grant No. PHD/0157/2547), Prince of Songkla University through Natural Products from Mangrove Plants and Synthetic Materials Research Unit (NSU) and Graduate School and the Royal Thai Government Budget for financial support.

References and notes

- Saralamp, P.; Chuakul, W.; Temsirirkkul, R.; Clayton, T.; Medicinal Plants in Thailand Vol. 1. Department of Pharmaceutical Botany, Mahidol University, Bangkok, 1996, pp 49.
- 2. Ultee, A. J. The ethereal oil of Gastrochilus Panduratum. *Ridl Verslag Akad Wetenschappen Amsterdam* **1957**, *36*, 1262.
- 3. Jaipetch, T.; Kanghae, S.; Pancharoen, O.; Patrick, V. A.; Reutrakul, V.; Tuntiwachwuttikul, P.; White, A. H. *Aust. J. Chem.* **1982**, *35*, 351.
- Pancharoen, O.; Kelvin, P.; Reutrakul, V.; Taylor, W. C.; Tuntiwachwuttikul, P. Aust. J. Chem. 1987, 40, 455.
- Ungsurungsie, M.; Sutheinkul, D.; Paovalo, C. Food Cosmet. Toxicol. 1982, 120, 527.
- Achararit, C.; Panyayong, W.; Ruchatakomut, E. Special project for the degree of B.Sc. (Pharm.), Faculty of Pharmacy, Mahidol University. 1983.
- Pathong, A.; Tassaneeyakul, W.; Kanjanapothi, D.; Tuntiwachwuttikul, P.; Reutrakul, V. *Planta Med.* 1989, 55, 133.
- 8. Apisaksirikul, A.; Anantasarn, V. *Abstract, 10th Conference of Science and Technology*; Chiang Mai University: Chiang Mai, 1984.
- 9. Thamaree, S.; Pachotikarn, C.; Tankeyoon, M.; Itthipanichpong, C. *Chula. Med.* **1985**, *29*, 39.
- Murakami, A.; Kondo, A.; Nakamura, Y.; Ohigashi, H.; Koshimizu, K. Biosci. Biotech. Biochem. 1993, 57, 1971.
- 11. Areekul, S.; Sinchaisri, P.; Tigvatananon, S. Kasetsart J. (Nat. Sci.) 1987, 21, 395.

- 12. Kohl, N. E.; Emini, E. A.; Schleif, W. A. *Proc. Natl. Acad. Sci. U.S.A.* **1988**, *85*, 4686.
- Tewtrakul, S.; Subhadhirasakul, S.; Puripattanavong, J.; Panphadung, T. Songklanakarin J. Sci. Technol. 2003, 25, 504
- 14. Tuntiwachwuttikul, P.; Pancharoen, O.; Reutrakul, V.; Byrne, L. Aust. J. Chem. 1984, 37, 449.
- Tuchinda, P.; Reutrakul, V.; Claeson, P.; Pongprayoon, U.; Sematong, T.; Santisuk, T.; Taylor, W. C. *Phytochemistry* 2002, 59, 169.
- Van Puyvelde, L.; De Kimpe, N.; Costa, J.; Munyjabo, V.; Nyirankuliza, S.; Hakizamungu, E.; Schamp, N. J. Nat. Prod. 1989, 52, 629.

- 17. Tanaka, H.; Ichino, K.; Ito, K. Phytochemistry 1984, 23, 1198
- Hufford, C. D.; Oguntimein, B. O. *Phytochemistry* **1980**, 19, 2036.
- Ma, C.; Nakamura, K.; Miyashiro, H.; Hattori, M.; Shimotohno, K. Phytother. Res. 1998, 12, 138.
- Park, K. M.; Choo, J. H.; Sohn, J. H.; Lee, S. H.; Hwang, J. K. Food Sci. Biotechnol. 2005, 14, 286.
- Yun, J. M.; Kwon, H.; Hwang, J. K. Planta Med. 2003, 69, 1102.
- 22. Min, B. S.; Bae, K. H.; Kim, Y. H.; Miyashiro, H.; Hattori, M. *Phytother. Res.* **1999**, *13*, 680.